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Abstract

The Prandtl number dependence of unsteady laminar natural convection along an infinite vertical plate in a ther-

mally stratified fluid is investigated. Flows are induced by an impulsive (step) change in plate temperature and by a

suddenly imposed plate heat flux. Analytical solutions of the viscous equations of motion and thermodynamic energy

are obtained for Prandtl numbers near unity by the method of Laplace transforms and a regular perturbation

expansion. The zeroth-, first- and second-order terms in the expansion are obtained for an impulsive change in plate

temperature, while the zeroth- and first-order terms are obtained for a sudden application of a plate heat flux. The

developing boundary layers are thicker, more vigorous, and more sensitive to the Prandtl number at smaller Prandtl

numbers (<1) than at larger Prandtl numbers (>1). The analytical results are confirmed and extended with results from

numerical simulations for Prandtl numbers strongly deviating from unity.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The unsteady natural convection flow of a viscous

fluid along a vertical plate is a classical problem in fluid

mechanics and heat transfer, with significance for a

variety of engineering applications [1]. In the case where

the plate is doubly-infinite (no leading edges), the

Boussinesq equations of motion and thermodynamic

energy reduce to one-dimensional forms, and the prob-

lem becomes amenable to analytical treatment. Solu-

tions by the method of Laplace transforms have been

obtained for a variety of plate boundary conditions [2–

7], assuming the fluid is unstratified. These exact solu-

tions provide rare analytical descriptions of transient

natural convection flows and are potentially valuable as

a means of validating numerical convection models.
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The classical framework was recently extended by

Park and Hyun [8], Park [9], and Shapiro and Fedoro-

vich [10] (hereafter referred to as SF) to include thermal

stratification. SF also made provision for pressure work

for a perfect gas, a term that is neglected in the con-

ventional Boussinesq approximation. This term can also

be neglected in the SF theory by slightly modifying the

stratification parameter; the description is then suitable

for Boussinesq flow of liquids or gases. Park and Hyun

[8], and Park [9] considered flow in the gap between two

parallel plates, while SF considered flow in the semi-

infinite domain bounded by a single plate. Steady-state

solutions for these flows were obtained by Gill [11] and

Elder [12].

With attention restricted to fluid of Prandtl number

unity, SF obtained analytical solutions for the cases of

impulsive (step) change in plate perturbation tempera-

ture, sudden application of a plate heat flux, and for

arbitrary temporal variations in plate perturbation

temperature or plate heat flux. Thermal stratification

provided a negative feedback mechanism whereby rising

fluid cooled relative to the environment, while subsiding
ed.
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Nomenclature

cp specific heat at constant pressure

C Fresnel cosine integral, CðvÞ �R v
0
cosðpv02=2Þdv0

g acceleration due to gravity

I1, I3=2 modified Bessel functions of first kind of

orders 1 and 3/2, respectively

J1, J3=2 Bessel functions of first kind of orders 1 and

3/2, respectively

k wavenumber

K wavenumber separating oscillatory-decay

modes from non-oscillatory-decay modes

(defined in (64))

K� dominant boundary-layer wavenumber (de-

fined in (65))

L�1 inverse Laplace transform operator

p pressure

p0 normalized pressure deviation from ambient

value, p0 � ðp � p1Þ=qr

Pr Prandtl number, Pr � v=j
Q0 plate heat flux

s Laplace transform parameter

t time

T temperature

T 0 temperature perturbation, T 0 � T � T1
T 0
0 temperature perturbation at plate

ui i0th component of velocity vector

w vertical velocity

W nondimensional vertical velocity (defined in

(4) and (5))

x plate-normal Cartesian coordinate

xi i0th component Cartesian coordinate ðx1 ¼
x; x2 ¼ y; x3 ¼ zÞ

y horizontal Cartesian coordinate in the plane

of the plate

z vertical (along-plate) Cartesian coordinate

Greek symbols

b buoyancy parameter

c stratification parameter, c � dT1=dz (Bous-
sinesq flow of liquids or gases), or c �
dT1=dzþ g=cp (perfect gas, pressure work

term retained)

d nondimensional steady-state boundary layer

thickness

dij Kronecker delta tensor

e small parameter, e � Pr � 1

h nondimensional perturbation temperature

(defined in (4) and (5))

j thermal diffusivity

m kinematic viscosity

n nondimensional distance perpendicular to

plate (defined in (3))

q density

s nondimensional time (defined in (3))

s0; s00 dummy integration variables

x complex frequency (defined in (63))

Subscripts

0; 1; 2; . . . ; n order of term in series expansion

i; j tensor indices: i ¼ 1; 2; 3; j ¼ 1; 2; 3
pn particular solution of n0th differential equa-

tion (21) in series expansion

r reference value, a constant

s steady state solution

t transient solution

1 ambient value of dependent variable as

x! 1, a function of height

Superscripts

^ Laplace-transformed variable

� Fourier sine-transformed variable
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fluid warmed relative to the environment. Provision for

stratification allowed the solutions to approach steady-

state conditions at large times, whereas if there is no

stratification (classical solutions), the solutions grow

without bound.

The present investigation extends the SF framework

to fluids of arbitrary Prandtl number. First, analytical

results are obtained in the form of a perturbation

expansion for Prandtl numbers near unity. The zeroth-,

first-, and second-order terms in the expansion are ob-

tained for an impulsive change in plate temperature,

while the zeroth- and first-order terms are obtained for a

sudden application of a plate heat flux. A numerical

model of convection is then introduced to solve the

equations of motion and thermodynamic energy numer-
ically. The numerical results confirm the analytical the-

ory and extend the results to fluids with Prandtl numbers

that differ significantly from unity. Finally, we develop a

qualitative theory of the flow induced by an impulsive

change in plate temperature valid for arbitrary Prandtl

numbers.

The one-dimensional solutions described herein are

valid for times prior to the arrival of disturbances

originating at the leading edge, and prior to the onset of

any flow instabilities. Although we have not yet explored

the stability of these unsteady solutions, the stability of

the steady state has been investigated in [13,14]. Flow

stability was found to decrease with increasing plate

temperature and increase with increasing stratification.

In light of those studies and the laboratory experiments
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in [15–17], the main interest in our solutions will likely

be in cases where the stratification is large enough to

delay or prevent flow instability.
2. Governing equations and perturbation expansion

The governing equations and nondimensionalization

are discussed in SF, and will only be briefly summarized

herein. Consider a Cartesian coordinate system in which

x is the horizontal (plate-normal) coordinate and z is the
vertical (plate-parallel) coordinate. The plate is located

at x ¼ 0, and fluid fills the semi-infinite domain x > 0.

The fluid is quiescent until the imposition of a uniform

thermal disturbance at the plate (temperature pertur-

bation or heat flux) at times tP 0. The governing

equations are the vertical equation of motion and ther-

modynamic energy equation,

ow
ot

¼ g
T 0

Tr
þ m

o2w
ox2

; ð1Þ

oT 0

ot
¼ �cwþ j

o2T 0

ox2
: ð2Þ

Here wðx; tÞ is the vertical velocity, T 0ðx; tÞ �
T ðx; z; tÞ � T1ðzÞ is the temperature perturbation (actual

temperature T minus a linearly-varying ambient tem-

perature T1ðzÞ), and c � dT1=dzþ g=cp is the stratifi-

cation parameter. The flow scenario is illustrated

schematically in Fig. 1.

The above form of c is appropriate if we include

temperature advection and pressure work in the ther-

modynamic energy equation, and consider a perfect gas.

However, pressure work is often of minor importance,

and is neglected in the Boussinesq approximation. If we

neglect it in our work (by redefining c as c � dT1=dzÞ,
g
x

z

w = w(x, t)

T = T′′ (x, t)

Fig. 1. One-dimensional (parallel) natural convection flow

along an infinite vertical plate.
our theory then applies to Boussinesq flow of liquids and

gases.

The independent variables x and t are nondimen-

sionalized as

n � x
ðgc=TrÞ1=4ffiffiffi

m
p ; s � t

ffiffiffiffiffi
gc
Tr

r
: ð3Þ

For flow induced by an impulsive change in plate

perturbation temperature, T 0ð0; tÞ ¼ T 0
0, we nondimen-

sionalize the dependent variables as

h � T 0

T 0
0

; W � w
T 0
0

ffiffiffiffiffiffiffiffiffiffiffi
cTr=g

p
; ð4Þ

while for flow induced by sudden application of a plate

heat flux, Q0 ¼ �joT 0=oxð0; tÞ, we use

h � T 0 jðgc=TrÞ
1=4

Q0

ffiffiffi
m

p ; W � w
jc3=4ðTr=gÞ1=4

Q0

ffiffiffi
m

p : ð5Þ

The nondimensional versions of (1) and (2) are

oW
os

¼ h þ o2W

on2
; ð6Þ

oh
os

¼ �W þ 1

Pr
o2h

on2
; ð7Þ

The nondimensional boundary conditions are

W ð0; sÞ ¼ 0 ðno-slipÞ; ð8Þ

W ð1; sÞ ¼ 0; hð1; sÞ ¼ 0

ðdisturbance vanishes far from plateÞ ð9Þ

and either

hð0; sÞ ¼ 1 ðconstant plate perturbation temperatureÞ
ð10aÞ

or

oh
on

ð0; sÞ ¼ �1 ðconstant plate heat fluxÞ: ð10bÞ

The steady-state solutions (valid for s ! 1)

presented in [11,14] and SF, are hsðnÞ ¼ A cos

ðnPr1=4=

ffiffiffi
2

p
Þ expð�nPr1=4=

ffiffiffi
2

p
Þ, WsðnÞ ¼ B sinðnPr1=4=

ffiffiffi
2

p
Þ

expð�nPr1=4=
ffiffiffi
2

p
Þ, where A ¼ 1, B ¼ Pr�1=2 for step-

change in plate temperature, and A ¼
ffiffiffi
2

p
Pr�1=4,

B ¼
ffiffiffi
2

p
Pr�3=4 for suddenly applied plate heat flux. The

peak nondimensional vertical velocity occurs at a dis-

tance d ¼ p
ffiffiffi
2

p
Pr�1=4=4 from the plate, and has the value

WsðdÞ ¼ B expð�p=4Þ=
ffiffiffi
2

p
. Although the boundary layer

thickness d increases with decreasing Pr, the dependence
is weak (small exponent) except for Pr� 1. The Rey-

nolds numbers based on the dimensional values of d and

WsðdÞ are Re ’ 0:358T 0
0ðgj3=m5Trc3Þ1=4 for a step-change

in plate temperature, and Re ’ 0:506Q0=mc for a sudden

application of a plate heat flux. In either case Re
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increases with decreasing viscosity and decreasing

stratification parameter.

At early times, when the temperature gradient near

the plate is large and the vertical velocity is small, the

dominant thermodynamic process is conduction, and

the first term on the right hand side of (7) (accounting

for temperature advection and pressure work) is negli-

gible. Since the equation set without this term describes

the classical (unstratified) scenario, the analytical solu-

tions obtained in [2–7] also apply to the early stages of

convection in the stratified environment.

With e defined as the deviation of the Prandtl number

from unity, e ¼ Pr � 1, (6) and (7) become

oW
os

¼ h þ o2W

on2
; ð11Þ

ð1þ eÞ oh
os

¼ �ð1þ eÞW þ o2h

on2
: ð12Þ

Multiplying (11) and (12) by e�ss and integrating from

s ¼ 0 to s ¼ 1 yields a pair of coupled ordinary dif-

ferential equations,

s bW ¼ ĥ þ d2 bW
dn2

; ð13Þ

ð1þ eÞsĥ ¼ �ð1þ eÞ bW þ d2ĥ

dn2
; ð14Þ

for the Laplace-transformed variables ĥ �
R1
0

he�ss ds
and bW �

R1
0
W e�ss ds.

Using (14) to eliminate bW in favor of ĥ in (13), we

obtain a single fourth-order ordinary differential equa-

tion for ĥ,

d4ĥ

dn4
� sð2þ eÞ d

2ĥ

dn2
þ ð1þ eÞðs2 þ 1Þĥ ¼ 0: ð15Þ

It can readily be shown that bW satisfies an equation

of the same form as (15).

With attention restricted to Prandtl numbers near

unity, e is a small parameter and we seek solutions of

(15) for ĥ (and for bW ) in the form of regular perturba-

tion expansions in e [18]:

ĥ ¼ ĥ0 þ eĥ1 þ e2ĥ2 þ � � � ¼
X1
n¼0

enĥn;

bW ¼ bW0 þ e bW1 þ e2 bW2 þ � � � ¼
X1
n¼0

en bWn:

ð16Þ

As we will see, the differential equations and boundary

conditions for ĥn and bWn are independent of e. Accord-

ingly, after computing them (once), they can be applied

in (16) to obtain the solutions for ĥ and bW for any

Prandtl number near unity. The solutions for the origi-

nal variables h and W then follow by taking the inverse
Laplace transform L�1 of (16), and using the linearity of

the L�1 operator,

h ¼
X1
n¼0

enhn; W ¼
X1
n¼0

enWn; ð17Þ

where hn � L�1ðĥnÞ and Wn � L�1ð bWnÞ.
3. Analytical solutions

In this section we obtain the analytical solutions for a

step-change in plate temperature through the second-

order terms, and for sudden application of a plate heat

flux through the first-order terms. Readers not interested

in the mathematical details can skip to Section 4.

3.1. General form of the transformed variables

Applying (16) in (15), and collecting terms in com-

mon powers of e, we obtain a sequence of differential

equations for the ĥn,

d4ĥn
dn4

� 2s
d2ĥn
dn2

þ ðs2 þ 1Þĥn

¼
0; n ¼ 0;

s
d2ĥn�1

dn2
� ðs2 þ 1Þĥn�1; nP 1:

8<: ð18Þ

Since the disturbance vanishes far from the plate, ĥ0 is of

the form

ĥ0 ¼ a0 expð�n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ b0 expð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ; ð19Þ

while the higher order functions ĥn ðnP 1Þ are of the

form

ĥn ¼ an expð�n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ bn expð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ þ ĥpn; ð20Þ

where ĥpn is any particular solution of

d4ĥpn

dn4
� 2s

d2ĥpn

dn2
þ ðs2 þ 1Þĥpn

¼ s
d2ĥn�1

dn2
� ðs2 þ 1Þĥn�1; nP 1: ð21Þ

Setting n ¼ 1 in (21), and making use of (19) for ĥ0,

we see that ĥp1 must satisfy

d4ĥp1
dn4

� 2s
d2ĥp1
dn2

þ ðs2 þ 1Þĥp1

¼ ia0ðsþ iÞ expð�n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � ib0ðs� iÞ


 expð�n
ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ: ð22Þ

It can readily be verified that a particular solution

of (22) is of the form ĥp1 ¼ An expð�n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þþ
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Bn expð�n
ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ, where A ¼ �a0

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
=4, and

B ¼ �b0
ffiffiffiffiffiffiffiffiffiffi
s� i

p
=4. Thus, ĥ1 is of the form

ĥ1 ¼ a1



� a0
4

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
n
�
expð�n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ

þ b1

�
� b0

4

ffiffiffiffiffiffiffiffiffiffi
s� i

p
n



expð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ: ð23Þ

Proceeding to (22) with n ¼ 2 and making use of (23)

for ĥ1, we see that ĥp2 must satisfy

d4ĥp2
dn4

� 2s
d2ĥp2
dn2

þ ðs2 þ 1Þĥp2

¼ s
2
a0


�
þ ia1

�
ðsþ iÞ � i

4
a0ðsþ iÞ3=2n

�

 expð�n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ s

2
b0


�
� ib1

�
ðs� iÞ þ i

4
b0ðs� iÞ3=2n

�

 expð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ: ð24Þ

A particular solution of (24) is ĥp2 ¼ ðCnþ
Dn2Þ expð�n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þþ ðEn þ F n2Þexpð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ, where

D ¼ a0ðsþ iÞ=32, F ¼ b0ðs� iÞ=32, C ¼ ½ð3þ 2siÞa0=
32� a1=4�

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
, and E ¼ ½ð3� 2siÞb0=32� b1=4�ffiffiffiffiffiffiffiffiffiffi

s� i
p

. Thus we can write ĥ2 as

ĥ2 ¼ a2
n

þ ð3
h

þ 2siÞ a0
32

� a1
4

i ffiffiffiffiffiffiffiffiffiffi
sþ i

p
n þ a0

32
ðsþ iÞn2

o

 expð�n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ b2

�
þ ð3
�

� 2siÞ b0
32

� b1
4

� ffiffiffiffiffiffiffiffiffiffi
s� i

p
n

þ b0
32

ðs� iÞn2

�
expð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ: ð25Þ

Since the differential equation for bW is identical to

(15), and the disturbance vanishes far from the plate,

(19), (23), and (25) also describe the generic forms of bW0,bW1, and bW2, respectively.

3.2. Boundary conditions

For an impulsive change in plate temperature,

transform the plate conditions (10a) and (8) into

ĥð0Þ ¼ 1=s and bW ð0Þ ¼ 0, and apply them in (14) and

(13), obtaining d2ĥ=dn2ð0Þ ¼ 1þ e and d2 bW =dn2ð0Þ ¼
�1=s. Expanding these with (16) yields the temperature

functions at the plate as

ĥnð0Þ ¼
1
s ; n ¼ 0;
0; nP 1;

�
ð26Þ

d2ĥn
dn2

ð0Þ ¼ 1; n ¼ 0; 1;
0; nP 2;

�
ð27Þ

and the velocity functions at the plate as

bWnð0Þ ¼ 0; nP 0; ð28Þ
d2 bWn

dn2
ð0Þ ¼ � 1

s ; n ¼ 0;
0; nP 1:

�
ð29Þ

For a suddenly imposed heat flux, apply the trans-

forms of (10b) and (8) ðdĥ=dnð0Þ ¼ �1=s and bW ð0Þ ¼ 0Þ
in (14) and in the n-derivative of (13), obtaining

ð1þ eÞsĥð0Þ ¼ d2ĥ=dn2ð0Þ and sd bW =dnð0Þ ¼ �1=sþ
d3 bW =dn3ð0Þ. In view of (16), the temperature functions

at the plate become

dĥn
dn

ð0Þ ¼ � 1
s ; n ¼ 0;

0; nP 1;

�
ð30Þ

d2ĥn
dn2

ð0Þ � sĥnð0Þ ¼
0; n ¼ 0;
sĥn�1ð0Þ; nP 1;

�
ð31Þ

and the velocity functions at the plate becomebWnð0Þ ¼ 0; nP 0; ð32Þ

d3 bWn

dn3
ð0Þ � sd

bWn

dn
ð0Þ ¼

1
s ; n ¼ 0;
0; nP 1:

�
ð33Þ
3.3. Solution for impulsive (step) change of plate

temperature

Applying (26) and (27) in (19) for n ¼ 0 yields

a0 ¼ b0 ¼ 1=ð2sÞ, and so

ĥ0 ¼
1

2s
expð�n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ 1

2s
expð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ: ð34Þ

Applying (26) and (27) in (23) for n ¼ 1 yields

a1 ¼ �i=4, b1 ¼ i=4, and so

ĥ1 ¼ � i
4

expð
h

� n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

� 1

8
n

1

s

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
expð

�
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ

þ 1

s

ffiffiffiffiffiffiffiffiffiffi
s� i

p
expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
�
: ð35Þ

Applying (26) and (27) in (25) for n ¼ 2 yields

a2 ¼ i=8; b2 ¼ �i=8, and so

ĥ2 ¼
i
8

expð
h

� n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

þ 3

64
n

1

s

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
expð

�
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ

þ 1

s

ffiffiffiffiffiffiffiffiffiffi
s� i

p
expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
�

þ 3i
32

n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
expð

h
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ �

ffiffiffiffiffiffiffiffiffiffi
s� i

p


 expð � n
ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i
þ 1

64
n2 1

s
ðs

�
þ iÞ


 expð � n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ 1

s
ðs� iÞ expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
�
:

ð36Þ
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Similarly, application of (28) and (29) in (19), (23),

and (25) (the generic forms for both the transformed

temperature functions and the transformed velocity

functions) yields

bW0 ¼
i
2s

expð�n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � i

2s
expð�n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ; ð37Þ

bW1 ¼ � i
4

1

s
expð

�
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � 1

s
expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
�

� i
8

n
1

s

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
expð

�
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ

� 1

s

ffiffiffiffiffiffiffiffiffiffi
s� i

p
expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
�
; ð38Þ

bW2 ¼
1

16
expð

h
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

þ i
16

ðs
h

þ iÞ expð � n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � ðs� iÞ


 expð � n
ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

þ 3i
16

1

s
expð

�
� n
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i
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s
ðs

�
þ iÞ


 expð � n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � 1

s
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p
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ð39Þ

The inverse transforms hn � L�1ðĥnÞ and Wn �
L�1ð bWnÞ for n ¼ 0; 1 and 2 are readily evaluated using

the tabulated transforms in Appendix A together with

the integration theorem, L�1½gðsÞ=s� ¼
R s
0
Gðs0Þds0,

where GðsÞ ¼ L�1gðsÞ. The solutions can be expressed as

h0 ¼
n

2
ffiffiffi
p

p
Z s

0

cos s0

s03=2
exp

�
� n2

4s0



ds0; ð40Þ

h1 ¼ � n sin s
4

ffiffiffi
p

p
s3=2

exp

�
� n2

4s



� n
16

ffiffiffi
p

p



Z s

0

ðn2 � 2s0Þ cos s0

s05=2
exp

�
� n2

4s0



ds0; ð41Þ

h2 ¼
nð3n2 þ 2sÞ sin s

64
ffiffiffi
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þ n
256

ffiffiffi
p
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Z s
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ðn4 � 12s02Þ cos s0

s07=2
exp

�
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4s0



ds0; ð42Þ

W0 ¼
n

2
ffiffiffi
p

p
Z s sin s0

s03=2
exp

�
� n2

4s0



ds0; ð43Þ
0

W1 ¼ � n
16

ffiffiffi
p

p
Z s

0

ð2s0 þ n2Þ sin s0
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exp

�
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ds0;

ð44Þ

W2 ¼
nð6s � n2Þðs cos s � sin sÞ

64
ffiffiffi
p

p
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exp

�
� n2
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þ n
256

ffiffiffi
p

p
Z s

0

ðn4 þ 8n2s0 þ 20s02Þ sin s0

s07=2


 exp

�
� n2
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ds0; ð45Þ

where s0 is a dummy integration variable. The integrals

in (40)–(45) were evaluated with the trapezoidal formula

using a time step of Ds ¼ 0:001. Such a high temporal

resolution was required for an accurate evaluation of the

integrals near the plate because of the singular nature of

the integrands as n ! 0. As shown in SF, the singularity

in (40) compensates for the vanishing of n in front of

the integral, and allows the recovery of the desired

boundary condition h0 ! 1 as n ! 0. It can be shown

that all of the other functions in (41)–(45) vanish at the

plate.
3.4. Solution for sudden application of plate heat flux

Applying (30) and (31) in (19) for n ¼ 0 yields

a0
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
þ b0

ffiffiffiffiffiffiffiffiffiffi
s� i
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p
�
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p
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Applying (30) and (31) in (23) for n ¼ 1 yields
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ffiffiffiffiffiffiffiffiffiffi
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p
þ b1

ffiffiffiffiffiffiffiffiffiffi
s� i

p
¼�1=ð4sÞ and a1 � b1 ¼ �ð

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
�ffiffiffiffiffiffiffiffiffiffi

s� i
p

Þ=2, from which follow
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It is convenient to rewrite (47) as
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in order to obtain the first order transformed tempera-

ture function as

ĥ1 ¼
i
8
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The evaluation of bh2 and bW2 for this case is based on

the same techniques, but is exceedingly tedious and was

not completed.

Application of (32) and (33) in (19) and (23), written

in terms of bW0 and bW1, respectively, followed by some

lengthy algebraic manipulations yields the transformed

velocity functions as
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To evaluate the inverse transforms of these functions

we use the convolution theorem, L�1½f ðsÞgðsÞ� ¼R s
0
Gðs0ÞF ðs � s0Þds0, where GðsÞ ¼ L�1gðsÞ, and F ðsÞ ¼

L�1f ðsÞ, and the integration theorem in conjunction with

standard results presented in Appendix A. We obtain

h0 ¼
n
2p

Z s

0

sinðs � s0Þ
ðs � s0Þ3=2

Z s0

0

cos s00

s003=2
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ds00 ds0;

ð52Þ
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ds00 ds0; ð53Þ
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exp
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ds00 ds0;
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where s0 and s00 are dummy integration variables.

As shown in SF, the formula for the zeroth-order

function h0 simplifies at the plate to h0ð0; sÞ ¼
� 2 sin sffiffiffiffi

ps
p þ 23=2Cð

ffiffiffiffiffiffiffiffiffiffi
2s=p

p
Þ, where CðvÞ �

R v
0
cosðpv02=2Þdv0

is a Fresnel cosine integral. Unfortunately, formula (53)

for the first-order function h1 does not enjoy a similar

simplification. However, since the normal component of

the gradient of h1 is zero [Eq. (30) with n ¼ 1], the dis-

tribution of h1 along the plate can readily be determined

by extrapolating the solution from the first interior grid

point to the plate.

The integrals in (52)–(55) were evaluated with the

trapezoidal formula using a time step of Ds ¼ 0:001. The
Bessel function of first kind of order one J1 appearing in

(53) was evaluated with the first 20 terms of its ascending

series representation [20], a sufficiently accurate repre-

sentation for the times under consideration (s6 10).
4. Numerical simulation

The analytical solutions of the previous section are

valid for Prandtl numbers near unity. To explore the

limits of validity of these analytical solutions and to

extend our investigation to a wider range of Prandtl

numbers, we turn to numerical simulations. The
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numerical procedures adopted herein are based on

methods described in [21,22] applied in direct simulation

mode.

Consider the (dimensional) Boussinesq forms of the

equations of motion, thermodynamic energy, and mass

conservation,

oui
ot

þ uj
oui
oxj

¼ � op0

oxi
þ bT 0di3 þ m

o2ui
ox2j

; ð56Þ

oT 0

ot
þ uj

oT 0

oxj
¼ �cu3 þ j

o2T 0

ox2j
; ð57Þ

oui
oxi

¼ 0; ð58Þ

where p0 � ðp � p1Þ=qr is the normalized pressure devi-

ation from its hydrostatic value, ui ði ¼ 1; 2; 3Þ are the

components of the velocity vector along the Cartesian

coordinates xi ðx1 ¼ x; x2 ¼ y; x3 ¼ zÞ; dij is the Kro-

necker delta tensor, and the Einstein summation con-

vention for repeated indices is employed. Application of

(58) in the equation resulting from taking the divergence

of (56) yields a diagnostic equation for p0,

o2p0

ox2i
¼ � o

oxi
uj
oui
oxj

� 

þ b

oT 0

ox3
: ð59Þ

Although (56)–(59) apply to both laminar and tur-

bulent regimes of convection, the present study is re-

stricted to the laminar regime. The values of the plate

thermal forcings (temperature perturbation or heat flux)

and the physical parameters of the problem ðb; c; m; jÞ
used for the simulations reported herein were such that

the flow regime was laminar.

The governing equations were discretized on a stag-

gered Cartesian grid in a rectangular domain stretched

along the plate-normal ðxÞ direction. The equations for

the prognostic variables ðu; v;w; T 0Þ were integrated over
0          1           2           3          4 5
ξ

0
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1

1.5

θ

(a) (b

Fig. 2. Cross-sections of (a) h and (b) W at s ¼ 2 for Pr ¼ 1. Bold solid

temperature. Thin solid lines indicate analytical solutions for suddenly
time with the leapfrog scheme, with an Asselin time filter

used to prevent solution decoupling. The spatial deriv-

atives were approximated with second-order finite-dif-

ference expressions. The Poisson equation (59) was

solved at each time step with a Fast Fourier Transform

technique over the y–z planes (vertical planes parallel to
the plate), and a tridiagonal factorization method in the

plate-normal direction. No-slip and impermeability

conditions were applied on the velocity components at

the plate. Values of p0 at the plate were calculated from

the truncated version of the third ði ¼ 3Þ equation of

motion. At the opposite (large x) end of the computa-

tional domain, the normal gradients of all prognostic

variables were set to zero. Periodic boundary conditions

were imposed for all computed variables on the four x–y
and x–z computational boundaries of the domain. The

output velocity and temperature perturbation values

were averaged over the y–z planes. However, as long as

the flow remained laminar (which was the case for all

results reported herein), variations of these quantities in

the y–z planes were negligible. To facilitate comparisons

with the analytical results, the output variables were

nondimensionalized as in (3)–(5).
5. Analytical and numerical results

5.1. Code validation: results for Pr ¼ 1

To validate the numerical code, we revisited the case

of Pr ¼ 1 (the subject of SF). This was the only case for

which our analytical solutions were exact within the

Boussinesq framework. Differences between the analyt-

ical and numerical solutions of h and W were found to

be nearly imperceptible at all times for both the impul-

sive change of plate temperature and the suddenly ap-

plied heat flux. A sample cross-section illustrating the
0           1           2           3           4           5
0

0.1

0.2

0.3

0.4

W

ξ)

lines indicate analytical solutions for impulsive change in plate

applied heat flux. Crosses indicate numerical simulation results.
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nearly perfect agreement is depicted in Fig. 2 for s ¼ 2.

This diagram suggests that the numerical code is error

free and that the numerical procedures are adequate to

simulate the laminar flows under investigation. We now

examine the details of the distributions of h and W for a

variety of Prandtl numbers.

5.2. Impulsive (step) change of plate temperature

Contour plots of the velocity and temperature func-

tions h0; h1; h2;W0;W1, and W2 as functions of n and s are
presented in Fig. 3. The zeroth-order functions h0 and

W0 (which correspond to the exact solution for Pr ¼ 1)

have a boundary-layer character and approach steady

state conditions through a temporally decaying oscil-

lation. The zeroth-order temperature function h0 re-

verses sign on the periphery of the boundary layer, in a

region roughly centered on n ¼ 2:5. In the case of a

hot plate, conduction spreads the heat outward from the

plate, inducing a rising current of fluid adjacent to the

plate. The viscous drag of this updraft on the environ-

ment forces the ascent and cooling of stably stratified

fluid, resulting in a zone of cool fluid on the periphery of

the updraft. A cross-section of these flow variables at

s ¼ 2 was shown in Fig. 2.

The patterns of the first-order functions W1 and h1 are

similar to (but slightly broader than) the patterns of the

respective zeroth-order functions, W0 and h0, while the

patterns of the second-order functions W2 and h2 are, in

turn, similar to (but slightly broader than) the patterns of

the first-order functions. The successive broadening of

these functions is especially apparent in the locations

of the zero-value isolines. We also note that the first-

order functions are generally out of phase with the

zeroth-order functions, while the second-order functions

are generally in phase with the zeroth-order functions.

However, since the first-order terms contribute to the

overall solution through their product with e, namely

eW1 and eh1, these terms make in-phase contributions to

the solution (same phase as the zeroth-order functions)

for Pr < 1ðe < 0Þ, but out-of-phase contributions for

Pr > 1ðe > 0Þ. Moreover, since the second-order terms

contribute to the overall solution through e2h2 and e2W2

(which have the same signs as h2 and W2 respectively),

these terms always make in-phase contributions. Thus,

for Prandtl numbers decreasing in value beneath unity,

the zeroth-, first- and second-order functions are largely

in phase, and tend to make the boundary layer thicker

and more vigorous. In contrast, for Prandtl numbers

larger than unity, the first-order terms counter the zer-

oth- and second-order terms, and result in a weaker

boundary-layer flow.

Contour plots of the second-order approximate

solutions for h and W (sum of zeroth-, first- and second-

order terms, h ’ h0 þ eh1 þ e2h2;W ’ W0 þ eW1 þ e2W2Þ
are presented in Fig. 4 for Pr ¼ 0:71ðe ¼ �0:29Þ, the
Prandtl number for dry air at a temperature of 30�C at

atmospheric pressure [23]. Cross-sections of these sec-

ond-order approximate solutions at s ¼ 2 are presented

in Fig. 5. Also shown in Fig. 5 are the first-order

approximate solutions, h ’ h0 þ eh1;W ’ W0 þ eW1, the

zeroth-order approximate solutions, h ’ h0;W ’ W0,

and the numerical solution. The differences between the

second-order approximate solution and the numerical

solution are nearly imperceptible throughout the cross-

section. In the region of the peak vertical velocity, the

first-order approximate solution falls a few percent short

of the numerical solution, while the zeroth-order

approximate solution falls nearly 20% short of the

numerical solution.

Next consider cross-sections of the analytical and

numerical solutions at s ¼ 2 for the cases of Pr ¼ 0:5 in

Fig. 6(a)–(b) and Pr ¼ 1:5 in Fig. 6(c)–(d). Even though

the Prandtl numbers for these cases are no longer very

close to unity, the second-order approximate solution is

still quite close to the numerical solution (discrepancies

of only a few percent of the numerical solution at the

location of the peak vertical velocity). These cross-

sections together with the previous cross-sections of

Figs. (2) and (4) for Pr ¼ 1:0 and 0.71 show the

increase in peak boundary-layer velocity and boundary-

layer thickness as the Prandtl number decreases. The

relative magnitudes of the sequence of zeroth-, first-

and second-order approximate solutions for h and W
indicate the in-phase contributions of the zeroth-, first-

and second-order functions for Pr < 1, and the out-

of-phase contribution of the first-order function with

respect to the zeroth- and second-order functions for

Pr > 1.

Lastly, consider the numerically simulated flow cor-

responding to a Prandtl number so much larger than

unity that the analytical solutions would not be expected

to be useful. Depicted in Fig. 7 are the flow variables

obtained from a numerical simulation for Pr ¼
7:1ðe ¼ 6:1Þ, the Prandtl number for pure water at a

temperature of 20 �C at atmospheric pressure [23]. The

peak vertical velocity and boundary layer thickness are

greatly reduced from their corresponding values in the

lower Prandtl number flows. The amplitude of the

temporally-decaying wave-like part of the flow is also

noticeably reduced from that of the lower Prandtl

number flows.

5.3. Sudden application of plate heat flux

Contour plots of the zeroth- and first-order functions

h0; h1;W0, and W1 as functions of n and s are presented in

Fig. 8 for the case of a suddenly applied heat flux (as

noted in Section 3.4, the derivation of the second-order

functions was not completed). As in the case of the

impulsively changed plate temperature, the first-order

functions are largely out of phase with the zeroth-order



Fig. 3. Contour plots of zeroth-, first-, and second-order temperature functions (left-hand panels) and velocity functions (right-hand

panels) for case of impulsive change in plate temperature. Contour intervals are 0.05 for temperature functions and 0.02 for velocity

functions. Negative contours are dashed.
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Fig. 4. Contour plots of second-order approximate solutions for case of impulsive change in plate temperature with Pr ¼ 0:71: (a)

h ’ h0 þ eh1 þ e2h2 and (b) W ’ W0 þ eW1 þ e2W2. Contour intervals and labeling are as in Fig. 3.
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Fig. 5. Cross-sections of (a) h and (b) W at s ¼ 2 for case of impulsive change in plate temperature with Pr ¼ 0:71. Bold dashed lines

indicate zeroth-order approximate solutions, h ’ h0 and W ’ W0. Thin dashed lines indicate first-order approximate solutions,

h ’ h0 þ eh1 and W ’ W0 þ eW1. Solid lines indicate second-order approximate solutions h ’ h0 þ eh1 þ e2h2 and

W ’ W0 þ eW1 þ e2W2. Crosses indicate numerical simulation results.
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functions. Since the first-order functions contribute to

the overall solution through their product with eðeW1

and eh1Þ, these terms again make in-phase contributions

to the solution (same phase as zeroth-order functions)

for Pr < 1ðe < 0Þ, and out-of-phase contributions for

Pr > 1ðe > 0Þ. Contour plots of the first-order approxi-

mate solutions h ’ h0 þ eh1 and W ’ W0 þ eW1 are pre-

sented in Fig. 9 for Pr ¼ 0:71ðe ¼ �0:29Þ. The flow

patterns are qualitatively similar to those in the case of

the impulsively changed plate temperature (Fig. 4).

Cross-sections of this first-order approximate solution,

the zeroth-order approximate solutions, h ’ h0;W ’ W0
and the numerical solution at s ¼ 2 are presented in Fig.

10. The first-order approximate solution for W falls

approximately 10% short of the corresponding numeri-

cal solution in the zone of peak vertical velocity, while

the zeroth-order approximate solution falls short by

approximately 30%. Cross-sections of the flow variables

at s ¼ 2 for Pr ¼ 0:5 and 1.5 are presented in Fig. 11. A

comparison of Figs. 11 and 6 shows that the discrep-

ancies between these approximate solutions and the

numerical solutions are larger in the suddenly applied

heat flux case than in the case of an impulsive change in

plate temperature.



0          1          2          3          4 5 0          1          2           3          4          5
ξ

0

0.1

0.2

0.3

0.4

0.5

W

ξ

0

0.5

1

θ

 

ξ

0

0.1

0.2

0.3

0.4

0.5

W

ξ

0

0.5

1

0          1          2           3          4          5 0          1          2           3          4          5

θ

(a) (b)

(c) (d)

Fig. 6. As in Fig. 5 but for Pr ¼ 0:5 [panels (a) and (b)] and Pr ¼ 1:5 [panels (c) and (d)].
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6. Qualitative behavior of the solution for arbitrary

Prandtl number

The preceding solutions were characterized by an

abrupt onset of convective flow adjacent to the plate

followed by strongly or weakly oscillatory approaches to

steady-state conditions. In this section we provide a brief

qualitative discussion of the transient part of the solu-

tion for arbitrary Prandtl number. Attention is restricted

to the case of an impulsive change in plate temperature.

We first decompose W and H into their steady-state

and transient components, W ðn; sÞ ¼ WsðnÞ þ Wtðn; sÞ
and Hðn; sÞ ¼ HsðnÞ þ Htðn; sÞ, where Ws and Hs were

described in Section 2. Substituting these forms into (6)

and (7), we find that the transient components Wt and Ht

satisfy partial differential equations identical to (6) and

(7) subject to homogeneous boundary conditions. Mul-

tiplying those equations by sinkn, and integrating from

n ¼ 0 to n ¼ 1, we obtain a pair of ordinary differential

equations for the Fourier sine-transformed variables

W ðk; sÞ �
R1
0
Wt sinkndn and Hðk; sÞ �

R1
0

Ht sinkndn:

dW ¼ �h � k2W ; ð60Þ

ds
d�h
ds

¼ �W � k
2

Pr
�h: ð61Þ

Using (60) to eliminate �h in favor of W in (61), we

obtain

d2W
ds2

þ k2 1

�
þ 1

Pr



dW
ds

þ 1

�
þ k

4

Pr



W ¼ 0: ð62Þ

Eq. (62) admits solutions of the form W � exs pro-

vided x satisfies x2 þ k2ð1þ 1=PrÞx þ 1þ k4=Pr ¼ 0,

that is

x ¼ k2

2
1

�
þ 1

Pr


"
� 1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

1=k4 þ 1=Pr

ð1þ 1=PrÞ2

s #
: ð63Þ

It can readily be shown that the real part of (63) is

always negative, so all modes undergo a temporal decay.

It can also be shown that the quantity under the radical

sign in (63) vanishes for the wavenumber k ¼ K defined

by

K �
ffiffiffi
2

pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j1� 1=Prj

p : ð64Þ



Fig. 7. Contour plots of (a) h and (b) W from numerically simulated case of impulsive change in plate temperature with Pr ¼ 7:1.

Contour intervals and labeling are as in Fig. 3.
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For small wavenumbers k < K, the quantity under

the radical sign is negative, so x is complex. These small

wavenumbers are associated with oscillatory-decay

modes. For large wavenumbers k > K, the quantity

under the radical sign is positive and less than one, so x
is a negative real number (for both positive and negative

solution branches). These wavenumbers are associated

with non-oscillatory-decay modes. We note that for

Pr ¼ 1;K is infinite and all modes are oscillatory-decay

modes.

To determine whether the gross behavior of a flow

corresponding to a particular Prandtl number is of

oscillatory-decay type or non-oscillatory-decay type, we

must check whether the dominant wavenumber of that

flow is greater than or less than K. Toward that end, we

introduce a reference wavenumber K� based on the

steady-state boundary layer thickness d. The results in

Section 5.2 suggest that the unsteady boundary layer

thickness should be well-approximated by the steady-

state boundary layer thickness for times after the initial

burst (onset) of convection along the plate. Since Ws rises

from zero at the plate to its maximum value at n ¼ d
(shown in Section 2 to be d ¼ p

ffiffiffi
2

p
Pr�1=4=4Þ, we can

interpret d as the dominant quarter-wavelength of the

flow. So K� ¼ 2p=ð4dÞ, or

K� ¼
ffiffiffi
2

p
Pr1=4: ð65Þ

This same formula would have resulted from a defi-

nition of K� as the sine-transform-weighted mean of k,
K� �
R1
0
kW sðkÞdkR1

0
W sðkÞdk

¼
ffiffiffi
2

p
Pr1=4; ð66Þ

where W s �
R1
0
Wssinkndn, though the demonstration is

lengthy and not given here.

The curves K ¼ KðPrÞ and K� ¼ K�ðPrÞ are presented
in Fig. 12. For Prandtl numbers near unity, K� < K and

the gross behavior is of oscillatory-decay type. For large

Prandtl numbers (e.g., Pr ¼ 7:1), K� > K and the gross

behavior is of non-oscillatory-decay type. These results

are consistent with our finding in Section 5.2 that the

solution for Pr ¼ 7:1 was ‘‘less wavy’’ than the solutions

for Prandtl numbers near unity.
7. Conclusions

This study extends the theory developed in SF for

unsteady laminar natural convection along an infinite

vertical plate in a thermally stratified fluid. The analyt-

ical solutions in that study were valid for a Prandtl

number of unity. In the present investigation, approxi-

mate analytical solutions are obtained for Prandtl

numbers near unity by the method of Laplace trans-

forms and a regular perturbation expansion. The zeroth-,

first- and second-order terms in the expansion are

obtained for an impulsive change in plate temperature,

while the zeroth- and first-order terms are obtained for a

sudden application of a plate heat flux. The (exact)

analytical solutions for Pr ¼ 1 are used to benchmark a



Fig. 8. Contour plots of zeroth- and first-order temperature functions (left-hand panels) and velocity functions (right-hand panels) for

case of suddenly applied heat flux. Contour intervals and labeling are as in Fig. 3.

Fig. 9. Contour plots of first-order approximate solutions for case of suddenly applied heat flux with Pr ¼ 0:71: (a) h ’ h0 þ eh1 and

(b) W ’ W0 þ eW1. Contour intervals and labeling are as in Fig. 3.
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zeroth-order approximate solutions h ’ h0 and W ’ W0. Thin dashed lines indicate first-order approximate solutions h ’ h0 þ eh1 and

W ’ W0 þ eW1. Crosses indicate numerical simulation results.
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Fig. 11. As in Fig. 10 but for Pr ¼ 0:5 [panels (a) and (b)] and Pr ¼ 1:5 [panels (c) and (d)].
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numerical model of convection which is then used to

obtain numerical solutions for a variety of Prandtl

numbers. In this manner, the accuracy of the analytical

descriptions is explored for Prandtl numbers ranging

between 0.5 and 1.5, including Pr ¼ 0:71, the value for

dry air at a temperature of 30 �C at atmospheric pres-
sure. The second-order approximate solution for the

case of the impulsive change in plate temperature yields

a remarkably accurate flow description for Prandtl

numbers in this range. A numerical simulation is also

obtained for Pr ¼ 7:1, the Prandtl number for pure

water at a temperature of 20 �C at atmospheric pressure.



Fig. 12. Regime diagram for flow due to an impulsively chan-

ged plate temperature. Solid curves depict K ¼ KðPrÞ, the

boundary in wavenumber space between oscillatory-decay

modes ðk < KÞ and non-oscillatory-decay modes ðk > KÞ. Da-

shed curve depicts K� ¼ K�ðPrÞ, a reference wavenumber based

on boundary-layer thickness.
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The developing boundary layers in the investigated flow

cases are found to be thicker, more vigorous and more

sensitive to the Prandtl number at smaller Prandtl

numbers (<1) than at larger Prandtl numbers (>1).

We also present a qualitative theory of flow behavior

for arbitrary Prandtl number for the case of an impul-

sive change in plate temperature. The analysis considers

the Fourier sine-transformed equations of motion, and

examines the temporal behavior of each mode in wave-

number space as a function of Prandtl number. The

analysis shows that the gross behavior of flows with

Prandtl numbers near unity is of oscillatory-decay type,

while the gross behavior of flows with large Prandtl

numbers is of non-oscillatory-decay type.

It should be borne in mind, however, that all ana-

lytical and numerical results reported herein are valid for

the laminar regime. Flow instabilities, transition to

turbulence, and the structure of the resulting turbulent

solutions will be examined in future studies.
Appendix A

The inverse transformations that led to the solutions

in Sections 3.3 and 3.4 were obtained by applying the

integration and convolution theorems to the results

collected in this appendix. We have drawn on an

extensive table of transforms (Roberts and Kaufman

[19], hereafter referred to as RK), and made free use of

standard results on Bessel functions (e.g., Jahnke and

Emde [20]).
Our work is facilitated by use of two generic shifting

operations:

Operation 1: L�1½gðsþ iÞ � gðs� iÞ� ¼ �2if ðsÞ sin s,
[RK, p. 170, Eq. (9)].

Operation 2: L�1½gðsþ iÞ þ gðs� iÞ� ¼ 2f ðsÞ cos s,
[RK, p. 169, Eq. (8)].

where f ðsÞ and gðsÞ denote a Laplace transform pair,

that is, f ðsÞ is the original function and gðsÞ ¼ L½f ðsÞ� is
the corresponding image function.

Operation 1 applied to RK, p. 246, Eq. (14) yields:

L�1 expð
h

� n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

¼ �i n sin sffiffiffi
p

p
s3=2

exp

�
� n2

4s



: ðA:1Þ

Operation 2 applied to RK, p. 246, Eq. (14) yields:

L�1 expð
h

� n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

¼ n cos sffiffiffi
p

p
s3=2

exp

�
� n2

4s



: ðA:2Þ

Operation 1 applied to RK, p. 246, Eq. (15) yields:

L�1
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
expð

h
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ �

ffiffiffiffiffiffiffiffiffiffi
s� i

p
expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

¼ �i ðn
2 � 2sÞ sin s
2

ffiffiffi
p

p
s5=2

exp

�
� n2

4s



: ðA:3Þ

Operation 2 applied to RK, p. 246, Eq. (15) yields:

L�1
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
expð

h
� n

ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ

ffiffiffiffiffiffiffiffiffiffi
s� i

p
expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

¼ ðn2 � 2sÞ cos s
2

ffiffiffi
p

p
s5=2

exp

�
� n2

4s



: ðA:4Þ

Operation 1 applied to RK, p. 246, Eq. (18) yields:

L�1 ðs
h

þ iÞ expð � n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ � ðs� iÞ expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

¼ �in ðn
2 � 6sÞ sin s
4

ffiffiffi
p

p
s7=2

exp

�
� n2

4s



: ðA:5Þ

Operation 2 applied to RK, p. 246, Eq. (18) yields:

L�1 ðs
h

þ iÞ expð � n
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
Þ þ ðs� iÞ expð � n

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ
i

¼ n
ðn2 � 6sÞ cos s

4
ffiffiffi
p

p
s7=2

exp

�
� n2

4s



: ðA:6Þ

RK, p. 207, Eq. (8) is

L�1ð
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
�

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ ¼ eis � e�is

2
ffiffiffi
p

p
s3=2

¼ i
sin sffiffiffi
p

p
s3=2

: ðA:7Þ

RK, p. 209, Eq. (29) is L�1½ð
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
�

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ2� ¼

i 2I1ðisÞs , where I1 is the modified Bessel function of the first

kind of order one. This can be rewritten using
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I1ðisÞ ¼ iJ1ðsÞ, where J1 is the Bessel function of the first

kind of order one:

L�1 ð
ffiffiffiffiffiffiffiffiffiffi
sþ i

ph
�

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ2
i
¼ � 2J1ðsÞ

s
: ðA:8Þ

RK, p. 209, Eq. (29) is L�1½ð
ffiffiffiffiffiffiffiffiffiffi
sþ i

p
�

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ3� ¼

i3=2 3
ffiffi
2

p

s I3=2ðisÞ. This can be rewritten using
ffiffi
i

p
I3=2ðisÞ ¼

�J3=2ðsÞ, and the fact that Bessel functions of half-inte-

ger order can be expressed in closed form in terms of

elementary functions. In the present case, J3=2ðsÞ ¼ffiffi
2

pffiffi
p

p
s3=2

ðsin s � s cos sÞ, and we obtain

L�1 ð
ffiffiffiffiffiffiffiffiffiffi
sþ i

ph
�

ffiffiffiffiffiffiffiffiffiffi
s� i

p
Þ3
i
¼ i

6ðs cos s � sin sÞffiffiffi
p

p
s5=2

: ðA:9Þ
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